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Abstract. In the initial months after birth, infants rely solely on cry-
ing as their primary means of communication with the external world.
However, for parents of newborns, deciphering the meaning behind an
infant’s cries can be a challenging task. In this study, we extract spectro-
grams of each category of infant cry as feature inputs and utilize CNN,
CRNN, AST, and the ensemble model to classify five categories of in-
fant cries using the Baby Chillanto Database. Three distinct tasks with
different training and testing conditions are designed for evaluation of
model robustness. Experimental results show that the ensemble model
ultimately achieves the best performance, with accuracies of 94.05% and
61.10% on the clean and noisy test sets respectively, thereby present-
ing compelling evidence for the complementary information between the
three individual deep learning models with heterogeneous network ar-
chitectures. This research offers a practical solution to aid parents in
effectively understanding their baby’s condition and needs.

Keywords: Infant cry detection - CNN - CRNN - AST - Ensemble mod-
eling.

1 Introduction

For newborn babies, crying is their only way of communicating with the outside
world. However, many parents encounter challenges in accurately interpreting
their baby’s emotions or needs. Furthermore, during the initial months after
birth, accurate diagnosis of conditions like asphyxia and deafness requires lengthy
testing procedures, which can lead to irreversible brain damage in some infants.
To address these concerns, infant cry detection technology has emerged as a
potential solution. By conducting research on infant cry detection, advancements
can be achieved in domains including infant care, monitoring newborn health
status, and screening for neonatal diseases.

Research on infant cry detection was initiated by Wasz-Hockert et al in the
1960s [1]. In the literature, many previous studies focused on using conven-
tional machine learning techniques. For example, in [2], the incremental support
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vector machine (SVM) was proposed for infant cry recognition; Authors in [3]
introduced a KNN classifier that utilizes Pitch, Short-time energy, Harmonicity
Factor, and Harmonic-to-Average Power as features for infant cry signal classi-
fication; Works in [4] attempted to apply Gaussian Mixture Models (GMM) to
classify distinct categories of infant vocalizations, while [5] used a type-2 fuzzy
classifier for classifying hunger and pain infant cries. In recent years, with the
increasing popularity of deep learning, numerous studies have endeavored to em-
ploy neural networks for infant cry detection. Such as, in [6], they utilized DNN
and CNN to effectively classify infant cry into non-asphyxia and asphyxia cate-
gories; Works in [7] applied the large-scale self-supervised pre-training to assist
the cry-based detection of neurological injury as well as the identification of cry
triggers. In summary, the transition from conventional machine learning to deep
learning has been evident in the study of infant cry detection. However, most of
these previous works only focused on the clean condition of infant cry detection,
investigation of the noise robustness and cross-domain generalization ability of
DNN-based models is extremely limited.

In this study, we aim to explore the cross-domain noise robustness and be-
havior of individual DNN-based models with heterogeneous network architec-
tures for infant cry detection. The main contributions are as follows: 1) Three
different types of DNN-based models, the CNN, CRNN, and AST models are
investigated for the infant cry detection; 2) The ensemble learning is proposed to
combine three individual models to exploit they complementary information; 3)
We design three distinct tasks, namely Clean-Clean, Clean-Noise and CNoise-
CNoise to evaluate the methods’ cross-domain and noise robustness on both
clean and noisy conditions. Experimental results show that across three distinct
tasks, the three heterogeneous DNN models show different advantages under dif-
ferent infant cry detection conditions. The complementary information between
individual models can be well captured by the ensemble model.

2 Methods

2.1 Overall Framework

Ensemble learning is a machine learning technique that combines multiple mod-
els to enhance the accuracy and stability of predictions, finding extensive ap-
plications in diverse domains such as computer vision [8] and natural language
processing [9].

In this study, we first design three individual deep neural networks with het-
erogeneous structures to examine their effectiveness for five categories of infant
cry detection, then we apply ensemble learning to further enhance the infant cry
detection performance. The overall framework is illustrated in Fig. 1. Specifically,
the three individual models are a simple CNN (Convolutional Neural Network),
a CRNN (convolutional neural network plus a recurrent neural network), and
an AST (Audio Spectrogram Transformer) model. We employ soft voting to
construct the ensemble model by calculating a weighted average of posterior
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probabilities on five categories predicted by the CNN, CRNN, and AST mod-
els. The final prediction outcome corresponds to the category with the highest
weighted average probability. Below are the details:
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Fig. 1. Structure of the ensemble model
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where FP;; represents the prediction probability of the ¢ model for class j, and
Wrp; represents the weight assigned to model i. N represents the number of
individual deep learning models we utilize.

The details of the specific structures of designed CNN, CRNN, and AST
models for infant cry detection are presented in the following sections.

2.2 CNN

CNN (Convolutional Neural Network) exhibits superiority in infant cry detec-
tion tasks due to its ability to automatically learn hierarchical features from
raw audio data. By employing convolutional layers, CNN captures local pat-
terns and gradually assembles them into higher-level representations, enabling
effective discrimination between different cry patterns. This hierarchical feature
learning makes CNN well-suited for recognizing complex patterns in infant cries,
contributing to its superior performance in the task of infant cry detection.

In previous works, CNN has been extensively studied for the infant cry detec-
tion purpose and has consistently showcased commendable performance. In [10],
CNN achieved an impressive recognition rate of 8% on the Dunstan Baby Lan-
guage Database. Additionally, works in [11] compared the CNN with ANN, and
LSTM on an infant cry dataset from Far Eastern Memorial Hospital, and they
found that the CNN consistently outperformed other models in four-class, three-
class, and two-class infant cry classification tasks.
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In this paper, we also design a CNN network to see its effectiveness of our
cross-domain infant cry detection, the detail structure is shown in Fig. 2. The
architecture is composed of two main parts: the convolutional component and
the linear component.
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Fig. 2. Generic representation of the CNN architecture

The convolutional component consists of three continuous convolutional lay-
ers, each incorporating a 5x5 kernel for feature extraction, followed by a ReLLU
activation function, and concluded with a maximum pooling operation for down-
sampling the feature map. These convolutional operations effectively capture
significant spatial features from the original audio spectrogram.

The linear component expands the feature graph processed by convolutional
and pooling layers into a one-dimensional vector, then goes through a linear
transformation, followed by the utilization of softmax activation for classifica-
tion. The prediction result is determined as the category with the highest prob-
ability among the five categories of infant cries.

2.3 CRNN

CRNN is a model that effectively integrates a convolutional neural network
(CNN) and a recurrent neural network (RNN) to serve as both feature extractors
and classifiers. This architecture has been widely used in DCASE tasks [12,13];
However, its application in infant cry detection tasks is limited. It is anticipated
that leveraging this sophisticated framework can yield promising results for in-
fant cry detection, thereby contributing to advancements in this domain.

In this paper, the CRNN model structure is designed as shown in Fig. 3. The
architecture is composed of three main parts: the convolutional component, the
recurrent component, and the linear component.

The convolutional component consists of two continuous convolutional layers,
each containing a convolutional operation, a Relu activation function, and a
maximum pooling operation. The convolution operation uses a 5x5 convolution
kernel for feature convolution, while the ReLU activation function introduces
nonlinearity to enhance transformation. Additionally, the feature map size is
reduced using a 2x2 convolution kernel in the maximum pooling operation.

The recurrent component consists of two stacked GRU units and incorporates
dropout regularization. The utilization of GRU cells in this section, instead of
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Fig. 3. The CRNN architecture

LSTM cells, is motivated by their reduced parameter requirements while still
delivering comparable performance. This operation effectively processes the fea-
tures obtained by the convolutional layer and captures the temporal dependen-
cies in these features.

The linear component in the proposed CRNN comprises a linear layer that
takes the hidden state of the last time step in the GRUs as input and applies
a linear transformation to map it to the desired number of output categories.
Subsequently, softmax activation is employed to assign probabilities to each class.

2.4 AST

AST, the Audio Spectrogram Transformer [14], which was first proposed by
Yuan Gong et.al in 2021, represents a pioneering convolution-free and purely
attention-based model for audio classification. Compared with CNN plus at-
tention hybrid model, AST exhibits a simpler structure, fewer parameters, and
faster convergence during the training process. The performance of this model
is evaluated across various audio classification tasks, all of which demonstrate
state-of-the-art results. In [14], the input audio waveform is transformed into
a 128-dimensional log mel spectrogram, which serves as the input to the AST.
Interestingly, our findings indicate that for infant cry detection, the AST trained
using raw spectrograms outperforms the one trained with log mel spectrograms.
Consequently, we have decided to utilize raw spectrograms with dimensions of
101x101 as inputs to the AST in order to enhance its performance.

Therefore, in this paper, we change the original AST [14] network structure
to our implementation and the details are illustrated in Fig. 4. First, the spectro-
gram of size 101x101 is divided into N patches of 16x16 overlapping 6 in time
dimension and space dimension respectively, where N = [(101—16)/(16—6)]2 =
81. Subsequently, each patch undergoes a linear transformation, resulting in a
one-dimensional patch embedding with a dimensionality of 768. To capture the
spatial characteristics of the spectrogram, a positional embedding of equal size
is added before each patch embedding. Additionally, similar to [14] , we add the
[CLS]| token at the beginning of the patch embedding sequence. The resulting
sequence is then fed into the Transformer encoder with 12 layers, and the out-
put of the [CLS] token serves as feature representations for audio spectrograms.
These representations are subsequently labeled and classified using a Multi-Layer
Perceptron (MLP) with a sigmoid activation function.
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Fig. 4. Details of the AST architecture

By leveraging the concept of transfer learning, we employ the pre-trained
weights of ViT [15] on ImageNet [16] to enhance the performance of AST. How-
ever, as stated in [14], certain modifications need to be made before implementing
transfer learning, due to slight dissimilarities in architecture between ViT and
AST. Firstly, since ViT takes a 3-channel image as input while AST requires a
single-channel spectrum diagram, it is necessary to average the weights corre-
sponding to the three input channels of ViT’s patch embedding layer into a single
channel for compatibility with AST. Additionally, we discard the final classifica-
tion layer of ViT and initialize a new classification layer specifically tailored for
AST in order to accommodate disparities between their respective classification
tasks.

3 Datasets and Task Design

3.1 Datasets

We use the publicly available Baby Chillanto Database to construct our infant
cry detection tasks. This database was collected by the National Institute of
Astrophysics and Optical Electronics, CONACYT, Mexico [17]. It consists of
five types of infant crying sounds, including asphyxia(340 samples), deaf(879
samples), hunger(350 samples), normal(507 samples) and pain(192 samples). In
total, it comprises 2,268 infant cry samples. The cry recordings are captured at
sampling rates of 8000Hz, 11025Hz, and 22050Hz, which is shown in Table 1.
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We standardizes all wav audio files to a sample rate of 8000 using the librosa
library in Python.

The Baby Chillanto Database was recorded under clean condition, however,
in this study, we aim to examine the cross-domain generalization ability and
noise robustness of three types of DNN-based models. Thus, we introduce noise
to the original Baby Chillanto Database by incorporating noise data from Au-
dioset [18]. The Audioset is a comprehensive audio dataset developed by Google
for research purposes in audio classification and semantic labeling. This dataset
comprises numerous 10-second-long audio clips sourced from YouTube. We lo-
cally acquire the Audioset dataset, segmented the audio files into 1-second in-
tervals, randomized their order, and randomly add noise to each individual file
within the Baby Chillanto Database. As a consequence, the noisy Baby Chillanto
database remains with 2,268 1-second wav files, mirroring the identical count of
audio files present in the initial Baby Chillanto database. We utilize this noisy
database in noisy related tasks.

Table 1. The summary of Baby Chillanto Database

Label |Number of Samples| Sampling Rate

Asphyxia 340 11025
Deaf 879 8000, 11025, 22050
Hunger 350 8000, 11025, 22050
Normal 507 8000, 11025, 22050
Pain 192 8000, 11025, 22050

3.2 Task Design

In practical application scenarios, the background environment in which a baby’s
crying occurs is typically very complex, including factors such as people talking,
various noises in a household setting like running water, the sound of an elec-
tric toothbrush, dish washing noise, mopping sounds, and various noises from
the living room TV. Therefore, researching the detection of baby cries in noisy
environments is of significant importance for real-world applications.

In order to evaluate the model cross-domain and noise robustness for infant
cry detection, we construct three individual training-test tasks in our experi-
ments, they are clean-clean, clean-noise and CNoise-CNoise, respectively. The
CNoise means the train and test sets include both the clean and the simu-
lated noisy infant cry segments. The subsequent sections would provide detailed
descriptions of the three tasks. The configuration of each task is presented in
Table 2.

Clean-Clean task aims to design an infant cry detection system using a clean
dataset to divide the samples within the dataset into a ratio of 64:16:20 for
training (1451 samples), validation (363 samples), and testing (454 samples). In
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Table 2. Task Design

Task Category‘ Train set Validation Set Test set
Clean-Clean Clean, 1451 Clean, 363 Clean, 454
Clean-Noise Clean, 1451 Clean, 363 Noisy, 454

CNoise-CNoise|Clean + Noisy, 1451 + 1451|Clean + Noisy, 363 + 363|Clean, 454 , Noisy, 454

this task, our objective is to develop a model capable of accurately detecting
and identifying infant cries. We extract audio features from the clean dataset’s
infant cries and input these features into a deep learning model for modeling
and training purposes. The remaining data from the clean dataset serve as both
the validation set and test set to validate and evaluate the trained model. This
task allows us to assess the accuracy and reliability of the model in an uncon-
taminated environment. Such results help verify the model’s performance under
ideal conditions and provide benchmark performance indicators for subsequent
tasks.

Clean-Noise task aims to design a cross-domain infant cry detection task
where the model is trained using only the clean infant crying segments, while
testing using a simulated noisy test set. It is used to validate the robust system
capable of effectively identifying infant cries in noisy environments. In contrast
to Clean-Clean task, this task necessitates the model’s ability to handle di-
verse real-world noise scenarios. In practical scenarios, the presence of noise is
inevitable, necessitating the assurance of proper functionality and sustained ac-
curacy in diverse environments for the infant cry detection system. By assessing
the model’s performance on a testing dataset encompassing a noisy background,
we can gain insights into its real-world efficacy and subsequently enhance or
adjust it to optimize application effectiveness while expanding its adaptability.

CNoise-CNoise task aims to design an infant cry detection task that the mod-
els are trained using the combination of clean and noisy datasets, while testing
on either clean or noisy test set. By amalgamating these two types of data, our
objective is to develop a model with exceptional performance and robustness,
enabling accurate identification of infant cries across diverse environmental con-
ditions. The integration of clean and noisy conditions in infant cry detection
is crucial for establishing a reliable system capable of functioning effectively in
various environments. This approach can provide more abundant training data,
improve the robustness and adaptability of the model, and make the infant cry
detection system more practical and reliable.

To our knowledge, we are the first to explore the performance of infant cry
detection under cross-domain and noisy conditions based on the Baby Chillanto
Database. We hope these tasks may help to facilitate an in-depth exploration
and analysis of infant cry detection under complex scenarios. Moreover, these
tasks have laid a solid groundwork for future research endeavors and practical
applications in this field.
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4 Experiments and Results

4.1 Setups

Features: We convert the audio files from the Baby Chillanto Database into
spectrograms with a single channel and a size of 101x101. Fig. 5 showcases a
sample spectrogram for each category. We choose to employ spectrograms for
infant cry detection is the fact that using spectrograms as input allows the model
to capture finer details and preserve the original audio information, thereby
minimizing potential information loss.

(d) Normal (e) Pain

Fig. 5. Spe ctrogram Samples of Baby Chillanto Database

Table 3. Model training configurations

Methods|Epoch|Batch size|Learning rate|Optimizer

CNN 30 64
CRNN | 50 32 0.001 Adam
AST 25 32

Model configurations: Table 3 presents the detail model training configura-
tions, including the training epoches, batch size, learning rate and optimizer.
In Table 4, the specific individual model structure and related parameter set-
tings are listed. For example, the CNN model comprises three convolutional and
pooling layers, and one linear layer. The CRNN model comprises two convolu-
tional and pooling layers, two GRU cyclic layers, and one linear layer. The AST
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Table 4. Parameters settings of each method

Methods ‘ Parameters
e Convl: filter = 16, kernel = 5x5, stride = 1, padding = 2
e MaxPooll: filter = 16, kernel = 2x2, stride = 2, padding = 0
e Conv2: filter = 32, kernel = 5x5, stride = 1, padding = 2
CNN |e MaxPool2: filter = 32, kernel = 2x2, stride = 2, padding = 0
e Conv3: filter = 32, kernel = 5x5, stride = 1, padding = 2
e MaxPool3: filter = 32, kernel = 2x2, stride = 2, padding = 0
e Linear: input size = 4608, output size = 5
e Convl: filter = 16, kernel = 5x5, stride = 1, padding = 2
e MaxPooll: filter = 16, kernel = 2x2, stride = 2, padding = 0
e Conv2: filter = 32, kernel = 5x5, stride = 1, padding = 2
CRNN |e MaxPool2: filter = 32, kernel = 2x2, stride = 2, padding = 0
e GRUI: input size = 800, hidden size = 32, dropout = 0.3
e GRU2: input size = 800, hidden size = 32, dropout = 0.3
e Linear: input size = 32, output size = 5
e Patch Partitioning: patch size = 16, patch number = 81,
overlap of time and frequency = 6
e Patch Embedding: embedding dimension = 768
e Positional Embedding: embedding dimension = 768
e Transformer Encoder: encoder number = 12
e Layer Normalization
e Attention :
e Linear(qkv): input size = 192, output size = 576
e Dropout
e Linear(proj): input size = 192, output size = 192
AST
e Dropout
e Layer Normalization
e MLP:
e Linear(fcl): input size = 192, output size = 768
¢ GELU
e Linear(fc2): input size = 768, output size = 192
e Dropout
e MLP head:
e Layer Normalization
e Linear: input size = 192, output size = 5

model partitions the spectrogram input into 81 patches and converts it into one-
dimensional patch embedding while incorporating positional embedding of equal
size before each patch embedding. Subsequently, the embedding sequence is fed
into the Transformer architecture, which encompasses 12 Transformer encoder
layers. Each encoder layer consists of a self-attention mechanism and Multi-Layer
Perceptron. Finally, a linear layer for classification is attached at the end of the
model.
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4.2 Results

Table 5 presents the performance evaluations of Clean-Clean, Clean-Noise, and
CNoise-CNoise tasks, including the accuracy, precision, recall, and the F1-score [19].

From the results of Table 5, it is clear that the performance under Clean-
Clean condition are much higher than those under other cross-domain or noisy-
related conditions. Such as, the detection accuracy of three individual models
are all above 90%, and the F1-scores are above 85%. Moreover, under the Clean-
Clean condition, we find that three heterogeneous models produce similar results
in terms of four evaluation metrics. The CRNN and AST only provide slight
improvements over the simple CNN model.

Table 5. Accuracy(%), Recall(%), Precision(%) and Fl-score(%) on the clean and
noisy test sets in three infant cry detection tasks.

Traini Testing Condition
raining -
Methods Condition Clean Noisy
Accuracy| Recall |Precision|F1-score{Accuracy| Recall |Precision|F1-score
CNN 90.09 86.69 84.44 85.26 52.75 51.19 46.14 42.93
CRNN Clean 93.39 89.83 87.75 88.45 52.09 51.94 45.07 41.74
AST : 91.41 87.01 84.86 85.50 58.24 52.72 41.82 37.34
The Ensemble Model 94.05 92.22 89.66 | 90.59 59.34 50.25 47.94 | 45.87
CNN 88.54 84.11 81.99 82.78 56.04 52.17 48.51 45.70
CRNN CNoise 92.29 89.52 86.99 87.94 56.26 59.27 49.22 46.93
AST ) 90.09 85.36 83.93 84.55 58.90 52.29 46.19 43.87
The Ensemble Model 92.95 90.68 87.73 | 88.80 | 61.10 60.21 49.28 46.65

When comparing the results on the clean and noisy test sets, we see that the
performance gap is very large, all the results on the noisy test set are heavily
degraded either with the models trained on purely clean or the CNoise samples.
This indicates that the performance of current DNN-based infant cry detection
techniques deviates far from the industry application requirements, how to im-
prove the noisy robustness of infant cry detection models is fundamental and
important for real-world application scenarios.

By comparing the results between Clean-Clean and CNoise-Clean conditions,
it’s interesting to observe that, the models trained using combination of clean
and noisy audio samples don’t outperform the models trained on only the clean
training samples. The performances are even slightly worse when incorporating
the simulated noisy samples into the training data, this may due to these noisy
samples introduced an acoustic mismatch between the CNoise and clean test
data. However, when comparing the results of CNoise-noisy and Clean-Noisy
conditions, the results are significantly improved by adding the noisy training
samples to the CNoise training set.

Moreover, from both the results on the clean and noisy test sets, we see that
the CRNN outperforms both the simple CNN and complex AST models, it shows
better noise robustness and cross-domain generalization ability than other two
types of individual models. AST performs comparatively worse than CRNN that
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Fig. 6. Normalized Confusion Matrix for different models in the Clean-Clean Task

with simpler structure, possibly because AST encompasses a greater number of
parameters, thereby necessitating a larger amount of data for effective training.
Furthermore, due to the relatively limited size of the dataset, overfitting may
arise during the training phase particularly for complex models like AST.

In addition, when comparing the results on the noisy test set with models
trained from clean data and the CNoise data, we find that all the results are
significantly improved when we add noise data into the pure clean training set,
resulting a better acoustic match between the training and testing conditions.

Finally, it is evident that across three distinct tasks, the ensemble model con-
sistently outperforms all the three individual models. The results clearly high-
light the superiority of the ensemble model over individual deep learning models,
providing compelling evidence for the complementary information between dif-
ferent models with different networks structures.

Figure 6 illustrates the confusion matrices for each model in the Clean-Clean
task. As evident from the confusion matrices, the models face challenges when
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attempting to differentiate between hunger infant cries and pain infant cries.
This difficulty can be attributed to the significant similarity in the spectrograms
of hunger and pain infant cries, making it challenging for the model to distin-
guish their differences. It’s worth noting that the confusion between the other
four types of infant cries is minimal, demonstrating a high level of discrimination
among these cry types. Furthermore, by comparing the confusion statistics be-
tween the ensemble model and three individual models, we find that the comple-
mentary information fusion can greatly alleviate the acoustic confusion between
hunger and pain infant cries, thus bring additional performance gains over all of
the individual models.

5 Conclusion

In this paper, we explored three distinct DNN-based models, namely CNN,
CRNN, and AST, for infant cry detection. Moreover, we introduced the en-
semble learning as a means to combine these three individual models, leverag-
ing their complementary information. To evaluate the model noise robustness
and cross-domain generalization ablity, we designed three distinct tasks, each
with varying training and testing conditions to see the behavior of each types
of DNN-based models. The experimental findings demonstrated that the three
heterogeneous DNN-based models exhibited varying advantages under different
infant cry detection conditions across the three distinct tasks. Importantly, ble
model effectively exploited the complementary information from these individual
models, thus resulting better detection performances in terms of variety evalu-
ation metrics. Our future work will focus on the techniques for improving the
infant cry detection performance under complex noisy scenarios.
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